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Disproportionality Measures of 

Concentration, Specialization, and Polarization 

 

Frank Bickenbach, Eckhardt Bode 
 

Abstract: 

This paper extends the methodological toolbox of measures of the regional concentration 

of industries and the industrial specialization of regions. It, first, defines the class of dis-

proportionality measures of concentration and specialization, and proposes a taxonomy 

that gives rise to a modular construction system for these measures. The taxonomy helps 

researchers to adjust measures flexibly to their research purpose and data. Second, the 

paper generalizes the taxonomy to (i) disproportionality measures of economic 

polarization that evaluate specialization and concentration simultaneously, and to (ii) 

spatial disproportionality measures of industrial concentration that deal with the 

checkerboard problem and the MAUP. 

Keywords: disproportionality measures, specialization, concentration, polarization, spatial 

weighting 

JEL classification: C43, F15, R12 

 

 

Introduction 

The new economic geography has raised concerns that economic integration at the regional 

and international level may heighten the regional concentration of industries (henceforth con-

centration for short) and the industrial specialization of regions (specialization). Innovative, 

dynamic industries may concentrate in core regions, leaving peripheral regions with aging, 

torpid industries. If the core regions specialize in dynamic, and the peripheral regions in tor-

pid industries, both groups of regions will be more vulnerable to adverse macroeconomic 

shocks, and the peripheral regions will grow slower in terms of income and employment.  

Various studies have explored the evolutions of concentration and specialization in Europe 

and other regions using statistical inequality measures borrowed directly or indirectly from 

the income inequality literature.1 The results emerging from these studies are remarkably 

inconclusive for at least three reasons (Combes and Overman 2004): First, many of the stud-

ies lack a clear-cut research purpose and test hypothesis. Second, the studies differ in the 

                                                

1 Examples are the Theil index, the Gini index, the coefficient of variation, and the so-called Krugman index 

(relative mean deviation). In addition, the Herfindahl index, dartboard measures, and statistics based on 

Ripley’s K have been used to measure concentration or specialization. See Bode et al. (2003), Combes and 

Overman (2004), and Nijkamp et al. (2003) for recent reviews.  
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sectoral and spatial scales of the data used to calculate the measures. The choice of the sec-

toral and spatial scales may affect the values of the measures due to the modifiable areal unit 

problem (MAUP) and the checkerboard problem.2 And third, the choice of the statistical 

measure applied has been largely ad hoc, neglecting the sensitivity of the measure’s adequacy 

to the research purpose and the sectoral and spatial scales of the data. 

To facilitate a more substantive analysis of concentration and specialization patterns, Combes 

and Overman (2004) set up a catalog of ‘baseline criteria’ for a ‘perfect’ measure. In a nut-

shell, these criteria require that the measure 

(i) be suitable for specifying an unambiguous and meaningful null hypothesis of no 

concentration or specialization that captures both systematic variations, suggested by 

economic theory, and random variations in the data; 

(ii) be comparable across industrial and regional units and scales, and unbiased by the MAUP 

and the checkerboard problem in both the sectoral and the regional dimension; and 

(iii) be suitable for statistical testing.  

Rather than trying to develop a ‘perfect’ measure, the purpose of the present paper is to 

improve upon the inequality measures used in the concentration and specialization literature 

so far (and upon their choice by the researcher). First, the paper extends the inequality meas-

ures to – what will be called – disproportionality measures, and it proposes a taxonomy for 

disproportionality measures of concentration and specialization. The disproportionality meas-

ures can be adjusted more flexibly to the research purpose and data at hand than the inequality 

measures. The taxonomy gives rise to a modular system of three characteristic features of any 

disproportionality measure: the projection function, the reference distribution, and the 

weighting scheme. The taxonomy can be used to define a great variety of disproportionality 

measures by determining each of the three features – largely independently of the other two 

features.3 It thereby facilitates choosing the measure that meets the requirements of a specific 

research hypothesis (baseline criterion i) and data (criterion ii) most closely. The taxonomy 

can also be used for performing sensitivity tests (criterion iii) by selectively modifying the 

                                                

2 The MAUP (Openshaw and Taylor 1979; Arbia 1989) arises from discretizing heterogeneous continuous 

variables. It comes under two guises: (i) Discretizing space averages away heterogeneity, such that results are 

sensitive to the scale of aggregation (scale problem), and (ii) the boundaries between the discrete spatial units 

may be misplaced (arbitrary boundary problem). The checkerboard problem (Arbia 2001) arises from 

neglecting relevant information on the locations of or distances between regions or industries. Problems 

similar to the MAUP and the checkerboard problem arise in the sectoral dimension as well. 

3 The bulk of the literature so far has taken measures as a fixed combination of two of these features, the 

projection function and the reference distribution. An important step towards using a more flexible combina-

tion of features is taken by Brülhart and Träger (2005), who consider using different references for the same 

projection function. However, they do not consider varying the weighting scheme independently of the refer-

ence distribution. 
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realization of a single characteristic feature.4 In addition, it may also give the researcher guid-

ance for specifying his null hypothesis properly, and for alleviating the effects of a suboptimal 

sectoral and spatial disaggregation of the data on his inferences.  

The taxonomy covers most of the measures used frequently in the literature on concentration 

and specialization, including the Gini coefficient, the Krugman index, the Theil index, and the 

coefficient of variation.5 It does not, however, cover measures that differ conceptually from 

inequality measures, such as the so-called ‘dartboard’ measures (Ellison and Glaeser 1997; 

Maurel and Sédillot 1999), or distance-based statistics based on Ripley’s K functions pro-

posed recently by Duranton and Overman (2005; 2006) and Marcon and Puech (2003; 2005). 

Second, the paper extends the set of available measures – and generalizes their taxonomy – to 

disproportionality measures of polarization of an economy (polarization measures for short) 

and spatial disproportionality measures of concentration (spatial concentration measures). 

Polarization measures assess the concentration of industries and specialization of regions 

within an economy simultaneously. As generalizations of the disproportionality measures of 

concentration and specialization discussed in the first part, polarization measures can be used 

for a nested analysis of concentration and specialization patterns at different sectoral and 

regional scales. Spatial concentration measures take into account the neighborhood structures 

of the regions as well as additional empirical or theoretical information about the unobserved 

intra-regional distributions of the variable of interest. Spatial disproportionality measures help 

deal with the MAUP and the checkerboard problem. They are thus alternatives to the 

distance-based concentration statistics based on Ripley’s K functions.  

The organization of the paper is as follows: Section 2 defines disproportionality measures of 

concentration and specialization, introduces the taxonomy for these measures, and illustrates 

how specific disproportionality measures of concentration and specialization can be defined 

using the modular system of characteristic features. Section 3 extends the taxonomy to dis-

proportionality measures of polarization, and Section 4 extends it to spatial disproportionality 

measures of concentration. Section 5 concludes, and discusses directions for future research. 

An empirical illustration for selected measures is given in Bickenbach et al. (2006). A more 

detailed tabulation of the various measures discussed in the paper is available at 

http://www.uni-kiel.de/ifw/staff/bode/measures.htm. 

                                                

4 A detailed discussion of the conceptual and technical issues of assessing the statistical significance of 

changes of a measure over time, or of the differences between regions or industries, is beyond the scope of 

the present paper. Among the few studies performing rigorous statistical tests are Brülhart and Träger (2005) 

and Mori et al. (2005). While the tests proposed by Mori et al. (2005) are specific to the Kullback-Leibler D 

statistic, which is akin to a Theil index, the bootstrap tests proposed by Brülhart and Träger (2005) for the 

Theil index and the CV can, in principle, be applied to all the disproportionality measures discussed in this 

paper. 

5 The Herfindahl index, another measure used in this literature, is closely related to the coefficient of variation.  
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1. The Taxonomy 

This section introduces a taxonomy of disproportionality measures of concentration and spe-

cialization. All the measures covered by the taxonomy can be characterized as measures of the 

disproportionality of the distribution of a population across a set of mutually exclusive char-

acteristics and a predetermined reference distribution. Since the available data is discrete in 

most applications, the discussion will focus on discrete versions of the measures. The popula-

tion may be workers, establishments, or units of value added; the characteristics may be 

industries or regions. For expositional convenience, the following discussion will exemplify 

measures of the regional concentration of employment in an industry.6 Thus, the population is 

workers within an industry, and their characteristics are the regions of their workplaces.7  

Formally, for a finite set of industries, i ∈ I = {1, …, I}, and a set of regions, 

r ∈ R = {1, …, R}, let L(ir) = (Lir: ir ∈ I x R) denote the industry-region employment pattern 

and Li(r) = (Lir: r ∈ R) the distribution of industry i employment across regions. For a given 

reference distribution, ΠΠΠΠ(r) = (Πr: r ∈ R), and absolute region-specific weights, 

W(r) = (Wr: r ∈ R), the disproportionality measure ΠW

iM  is defined as 
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. Technically, Mi is a function of wr 

and Xir/ iX  only, similar to inequality measures. A disproportionality measure, however, 

describes the inequality across regions of the proportions of the variable of main interest and 

its reference, Lir/Πr, rather than just the inequality of the variable of main interest. The refer-

ence, Πr, can be chosen by from a wide array of possible references, depending on the 

research purpose at hand. The population mean serves as a scaling factor. It ensures that the 

measure assumes a minimum value of zero, if the region-specific proportionality factors are 

the same in all regions (Lir/Πr = Lis/Πs ∀ r, s ∈ R). In addition, it makes the measure invariant 

to the scales of both the variable of main interest and the reference. The scale of the reference 

may consequently deviate arbitrarily from that of the variable of main interest.  

                                                

6 Hence, employment in an industry is the ‘variable of main interest’. 

7 For measures of specialization, the population is workers within a region and their characteristics are the 

industries. Formally, specialization measures can thus be obtained from concentration measures by merely 

switching the indices for regions and industries.  
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The taxonomy builds on the three characteristic features of the measures in equation (1): (i) 

the region-specific weights, W(r), (ii) the references, ΠΠΠΠ(r), and (iii) the projection function, fM. 

Together with the variable of main interest, Li(r), the three features unambiguously define a 

measure. For any empirical investigation, the specification of each characteristic feature 

should follow directly from the research purpose or the test hypothesis at hand, and take into 

account the specificities of the available data.  

(i) The region-specific weights, W(r), reflect the researcher’s choice of the basic units of the 

analysis (Brülhart and Träger 2005): for measures of concentration, the basic units are spatial 

units. The variable of main interest is defined as, say, the number of industry i workers per 

basic spatial unit.8 The region-specific weights ensure that each basic unit is assigned the 

same weight in calculating the measure. Disproportionality measures allow a variety of dif-

ferent spatial basic units to be specified, provided the variable of main interest as well as the 

references can be measured consistently in terms of these basic units. Only three types of 

basic units have, nonetheless, been used in the literature so far: First, the regions themselves 

have been chosen as basic units, which implies assigning all regions the same weight, inde-

pendent of their actual sizes or any other characteristics. These basic units are represented by 

the region-specific weights W(r) = 1(r) = (1, …, 1) in equation (1).9 Second, square kilometers 

(km²) have been chosen as basic units, which implies weighting each region by its geographi-

cal size (Ar), i.e., W(r) = A(r) = (A1, …, AR).10 And third, the average size of the area attributed 

to a worker in the region has been chosen as basic units, which implies weighting each region 

by its total employment, i.e., W(r) = L•(r) = (L•1, …, L•R). L•r [= ΣiLir] denotes the sum of 

workers over all industries in region r. Each worker in region r is taken to represent a share of 

1/L•r of the region’s area.  

Measures using regions as basic units will be labeled unweighted measures; those using non-

uniform region-specific weights weighted measures. Weighted measures are invariant to 

dividing a region into subregions,11 provided the weights represent the sizes of the regions, 

and the sub-regions exhibit, or are assumed to exhibit, identical concentration patterns.  

(ii) The reference distribution, ΠΠΠΠ(r), reflects the researcher’s choice of the benchmark, or the 

null hypothesis of “no” or “no unusual concentration”. Economically meaningful inferences 

require the reference distribution to pick up any systematic components in the observed 

                                                

8 For measures of specialization, the basic units are units of (sectoral) activities, such that the variable of main 

interest is defined as, say, the number of region r workers per sectoral unit. 

9 By standardizing the sum of weights to one, each region is assigned the relative weight wr = Wr/ΣrWr = 1/R. 

10 As the spatial distribution of workers within the regions cannot be observed in most cases, workers are 

assumed to be distributed uniformly across space within the region.  

11 Haaland et al. (1998) attribute this invariance to relative measures. The taxonomy here makes clear that it is 

solely due to the choice of the weights.  
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regional employment patterns that the researcher is not willing to label concentration for the 

research purpose at hand (Combes and Overman 2004). Similarly, anything the researcher 

wants to label concentration should show up as a deviation of the variable of main interest 

from its reference. Disproportionality measures allow a great variety of references to be speci-

fied, provided the references are defined over the basic units. Only three types of references 

have, nonetheless, been used in the literature so far. First, the uniform distribution has been 

chosen as the reference, which implies assuming all regions to be of the same size under the 

H0. This reference is represented by ΠΠΠΠ(r) = 1(r) in equation (1). Uniform references reflect the 

researcher’s emphasis on the qualitative characteristics of regions, or on administrative issues. 

Second, the distribution of employment observed at a higher-level sectoral aggregate (total 

regional employment, for example) has been chosen as the reference, which implies assuming 

the spatial distribution of the industry under investigation to equal that of total employment 

across all industries under the H0, i.e., ΠΠΠΠ(r) = L•(r). Aggregate references reflect the 

researcher’s emphasis on controlling for systematic differences between regions in the sizes 

of the labor force, in the attractiveness to firms or workers, the regulatory frameworks, or 

other institutional or political factors. And third, the distribution of the geographical sizes of 

regions has been chosen as the reference, which implies assuming employment in the industry 

under investigation to be distributed evenly across space under the H0, i.e., ΠΠΠΠ(r) = A(r). 

Measures based on the uniform reference will henceforth be labeled absolute measures, those 

based on a nonuniform reference relative measures.12  

(iii) The projection function, fM, reflects the researcher’s relative emphasis on region-specific 

proportionality factors of different magnitude. Some measures, such as the Theil index, 

emphasize variations in the range of low values of the region-specific proportionality factors 

(e.g., industry is strongly underrepresented in a region), others, such as GE measures with a 

sensitivity parameter α > 2, emphasize variations in the range of high values of the region-

specific proportionality factors (e.g., industry is strongly overrepresented).13 Again others, 

such as the relative mean deviation (RMD), emphasize changes in the balance between 

regions with over- and underrepresented industries and incidences of regions “jumping 

across” the reference.14  

                                                

12 Brülhart and Träger (2005) introduce the term topographic measures for measures using the area as a refer-

ence. This reference is just one of many possible nonuniform references.  

13 See Table 1 below for a formal definition of the different projection functions. 

14 See Cowell (2000) and Cowell and Flachaire (2002) for more details. In addition to being subject to theoreti-

cal considerations, the choice of the projection function may be subject to practical considerations. A 

projection function that does not put too much emphasis on extreme (positive and/or negative) region-

specific proportionality factors may be preferred to reduce the effects of indivisibilities in firm sizes or 

‘outliers’ on the measure. Alternatively, or in addition, the sensitivity of the results can be assessed by 

comparing the results for different projection functions. 
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In the literature, concentration and specialization measures have so far been classified by their 

projection function and their reference distribution (Haaland et al. 1998). The reference and 

the weights have always been assumed to be the same. Varying the references independently 

of the region-specific weights has not been considered an option. The present paper argues 

that this is unnecessarily restrictive. By distinguishing carefully between references and 

weights, the taxonomy adds one additional degree of freedom to the opportunities to choose 

an appropriate measure. 

Disentangling references and weights is useful for two reasons: First, the research purpose or 

test hypothesis may require using a reference that differs from the weighting scheme. For 

example, a study of local policies may require choosing the sphere of influence of local gov-

ernments as the basic units, i.e., W(r) = 1(r), while the aggregate regional employment is the 

proper benchmark, i.e., ΠΠΠΠ(r) = L•(r). Or the research purpose may require to compare the spa-

tial distribution of an industry to that of total employment, i.e., ΠΠΠΠ(r) = L•(r), while controlling 

for the geographical size of regions, i.e., W(r) = A(r). Second, by clarifying the distinct func-

tionality of the weights and the references, the taxonomy facilitates sensitivity testing. Selec-

tively changing the region-specific weights or the references will help in assessing the sensi-

tivity of the preferred measure to a variation of the basic units or the null hypothesis.  

Using the taxonomy, four different groups of measures can be defined for each projection 

function: An unweighted absolute measure and various unweighted relative, weighted abso-

lute, and weighted relative measures. Table 1, which will be discussed below in more detail, 

gives an overview of the general principle of defining disproportionality measures of concen-

tration for selected projection functions: the generalized entropy (GE) class of measures, the 

Theil index (T), the coefficient of variation (CV),15 the RMD, and the Gini coefficient (G). 

The first column of Table 1 gives, for each projection function, a general form that can be 

used to derive all related measures. For a given region-industry employment pattern, Li(r), a 

measure may be unambiguously defined by choosing a reference distribution, region-specific 

weights and a projection function. The remaining three columns of Table 1 give three 

examples of measures obtained for different combinations of weights and references: the 

unweighted absolute, an unweighted relative, and a weighted relative measure.16 In order to 

                                                

15 The Theil index and (a transformed version of) the CV are actually members of the GE class of measures. 

Owing to their popularity in the literature, they are nonetheless listed separately in Table 1. Table 1 can easily 

be extended to projection functions based on other measures discussed in the inequality literature (see, e.g., 

Cowell 1995; Silber 1999). 

16 To save space, weighted absolute measures are omitted, and the relative and the weighted measures are 

exemplified only for total regional employment as a reference or as weights. All three variants of the meas-

ures listed in Table 1 have actually been employed in studies of concentration or specialization, though not 

for all the projection functions: Among the weighted relative measures used in the literature are (i) the so-

called Krugman index (weighted relative RMD) used, e.g., by Krugman (1991), Hallet (2002), Dohse et al. 

(2002), and Traistaru et al. (2003); (ii) the so-called relative Theil index (e.g., Brülhart and Träger 2005), (iii) 
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compare the values of different measures directly, it may be useful to normalize the measures 

to the (0, 1) interval by dividing them by their upper bounds.17  

To illustrate the taxonomy, consider first the so-called Krugman index, which, for the con-

centration of industry i, is defined as  

 ∑∑
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As Ki is calculated as the unweighted sum of the absolute region-specific differences in 

employment shares for industry i, λir := Lir/ΣrLir = Lir/Li•, and the ‘reference’, 

λr := L•r/ΣiΣrLir = L•r/L••, it can be interpreted easily and intuitively: A value of, say, Ki = 0.5 

indicates that a share of at least one fourth (½ Ki) of the industry’s total workforce has to 

move to another region for the employment distribution to exactly correspond to the reference 

distribution. The Krugman index has traditionally been classified as a ‘relative’ measure. 

 

 

                                                                                                                                                   
the relative CV (e.g., Brülhart and Träger 2005), and (iv) the ‘locational’ Gini coefficient, as used by Krug-

man (1991), Amiti (1998) and Brülhart (2001). An unweighted relative measure is the ‘locational’ Gini coef-

ficient, as used by Südekum (2006). And among the unweighted absolute measures are (i) the traditional Gini 

coefficient (e.g., Aiginger and Leitner 2002, Midelfart-Knarvik et al. 2002), (ii) the Theil index as used by 

Aiginger and Davies (2004), and (iii) the CV as used by Aiginger and Leitner (2002). 

17 For details on the calculation of upper bounds, see http://www.uni-kiel.de/ifw/staff/bode/ measures.htm. 
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The taxonomy proposed in the present paper suggests looking at Ki in a slightly different way. 
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Here, LCir = λir/λr denotes the location coefficient for industry i and region r. By setting 

ΠΠΠΠ(r) = W(r) = L•(r), (3) can alternatively be derived directly from the general definition of the 

RMD given in the first column of Table 1. 

The first line of (3) clarifies the constructive principle of all the disproportionality measures 

discussed in the present paper: Any disproportionality measure first determines the propor-

tionality factor for each region by comparing the value for the region-industry, Lir, to the cor-

responding reference value, L•r. Second, it converts the region-specific proportionality factors  

into its specific metric by applying the projection function. The projection function of the 

RMD requires to (i) scale the region-specific proportionality factors by their weighted mean 

across all regions, ΣrλrLir/L•r = Li•/L•• [:= li], employing the weights determined by the choice 

of the basic units; (ii) subtract 1; (iii) take the absolute value; and (iv) take the weighted aver-

age over all regions, again employing the weights determined by the basic units.  

Following the same general principle, any of the three characteristic features of the dispro-

portionality measure may be varied separately. Setting W(r) = 1(r), and ΠΠΠΠ(r) = L•(r), an 

unweighted relative RMD is obtained as 

 ( ) ∑
=

• −
∑

==
R

r irr

ir
rrriRMD

UR

i
Rl

l
fRMD
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1
,, L1L  

where lir = Lir/L•r (see Table 1, third column),. Setting ΠΠΠΠ(r) = W(r) = 1(r) gives the unweighted 

absolute RMD,  

 ( ) ∑
=

−==
R

r

irrrriRMD
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i
R

fRMD
1

)()()(

1
,, λ11L  (4) 

(see Table 1, second column). Comparing the Krugman index, or weighted relative RMD in 

(2) to the unweighted absolute RMD in (4) clarifies the usefulness of the taxonomy vis-à-vis 

the traditional distinction of absolute and relative measures: according to the traditional dis-
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tinction, the two measures differ in just one characteristic, namely the reference. The taxon-

omy makes clear that the two measures actually differ in two characteristics, the reference and 

the region-specific weights.18  

Second, consider the generalized entropy class of measures, GE(α). In contrast to the RMD, 

which is frequently characterized as an ad-hoc measure, the GE measures have several useful 

properties defined by a set of axioms (see, e.g., Cowell 1995; Litchfield 1999). One useful 

property is decomposability: the total inequality within a population can be decomposed into 

the inequality within and that between any set of subgroups of the population. The GE class 

of measures is generally defined as 

 ( )
( ) ∑
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1

1

1
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Y  (–∞ ≤ α ≤ ∞) (5) 

for the vector of some characteristics Y(n) = (Y1, …, YN) of a population. The members of the 

population are the “basic units”, and nnN
YY ∑= 1  is the mean across the basic units. The 

parameter α governs the sensitivity of the projection function to changes in the ranges of high 

and low values of the YYn /  ratios.19 The most prominent GE measures are those given by 

α = 2, which is a simple monotonic transformation of the coefficient of variation, 

GE(2) = ½CV
 2
, and by α → 1, which is the Theil index, i.e., GE(1) = T.  

GE(α) in (5) can be decomposed into a within-groups (GE(α)w) and a between-groups compo-

nent (GE(α)b), such that GE(α) = GE(α)w + GE(α)b. For H subgroups with Nh basic units in sub-

group h (h = 1, …, H), the between group component is given by 

 ( )
( )∑= 
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hhGEb
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YfGE

1

)()()()( 1
1

1
,

α

αα αα
N , (6) 

where nh

N

nNh YY h

h
1

1
=∑=  is the unweighted mean of subgroup h, and [ ]nnNhN

N

h YYY h ∑=∑= 1  

the weighted average of all subgroup means. Ynh denotes the characteristic of the n
th

 member 

of the h
th

 subgroup.  

                                                

18 For testing the sensitivity of, for example, the weighted relative RMD in (3) to changes in the weighting 

scheme, it may also be informative to selectively change the weights of the region-specific proportionality 

factors while keeping the scaling factor of the region-specific proportionality factors unchanged, i.e., to com-

pare (3) to Σr|LCir–1|. Although the latter expression is not an RMD in terms of the present taxonomy, the 

comparison may still yield valuable information on the sensitivity of the preferred RMD to the weighting 

scheme. 

19 With α < 2, the measure is more sensitive to (mean-preserving) changes in observations with low values of 

YYn / ; with α > 2, it is more sensitive to (mean-preserving) changes in observations with high values of 

YYn /  (e.g., Cowell 2000; Cowell and Flachaire 2002). 
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Traditionally, the [unweighted] absolute GE(α) measures of concentration have been derived 

from (5) and the [weighted] relative measures from the between-group component (6), 

assuming the unobservable within-group component to be zero (Brülhart and Träger 2005). 

The taxonomy proposed in this paper instead suggests using a generalized form of the 

between-group component (6) as the unique basis for all GE measures of concentration (see 

Table 1, first row, for examples): 
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All disproportionality measures derived from (6a) share the usual properties of GE measures, 

provided the variables of main interest, the weights, and the references are related consistently 

to the basic units.  

Consider the two examples discussed earlier in this section, and assume the Theil index, 

GE(1), to be the appropriate projection function in both examples. In the first example, the 

study of local policy measures, which suggests choosing W(r) = 1(r) and ΠΠΠΠ(r) = L•(r), the pre-

ferred measure should be the unweighted relative Theil index )ln(1 irir

R

r

UR

i RT λλ=∑= . In the 

second example, the study comparing the spatial distribution of an industry to that of total 

employment for each km², which suggests choosing W(r) = A(r) and ΠΠΠΠ(r) = L•(r), the preferred 

measure should be the weighted relative Theil index ∑
=
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r irA
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irrWR
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A
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rr
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ln . 

Notice that the decomposition of the corresponding GE measure or Theil index for the basic 

units requires assuming that the fraction of industry-i workers in the total workforce does not 

vary across space within a region, i.e., Lin/L•n = Lir/L•r ∀ n = 1, …, Ar. Lin and L•n denote 

industry-i and total employment on the n
th
 km² in region r.  

The third and final group of measures illustrated here are measures based on the Gini projec-

tion function.20 The Gini coefficient is generally defined as two times the area between the 

Lorenz curve and the 45° line (shaded area in Figure 1) in a box plot of cumulated shares of 

individuals in the population on the horizontal axis and the cumulated shares of their char-

acteristics on the vertical axis. In terms of the taxonomy of the present paper, the population, 

depicted on the horizontal axis, consists of the basic units, the shares of which are represented 

by the (relative) region-specific weights, wr. The characteristics, depicted on the vertical axis,  

 

                                                

20  As the RMD, the Gini coefficient is an intuitively appealing ad hoc measure. It meets the requirements of the 

axiomatic approach, including decomposability, only under specific conditions.  
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Figure 1 – Lorenz curve of industrial concentration 
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as the general form of all Gini disproportionality measures (see Table 1).21 k in (7) and Figure 

1 indexes the observation with the k
th

 lowest region-specific proportionality factor.22 The Gini 

coefficients for the various basic units and references can be defined along the same lines as 

the RMD and GE measures above (see Table 1). 

                                                

21 Note that the expression in the second line of (7) does not require sorting observations by the ratio of the 

values depicted on the vertical and horizontal axes.  

22 Equation (7) includes all Gini coefficients used in the concentration and specialization literature as special 

cases. See footnote 17. 
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2. Generalization 1: Disproportionality Measures of Polarization 

Disproportionality measures of polarization of an economy evaluate the concentration of 

industries and the specialization of regions within the economy simultaneously. Formally, 

they are straightforward generalizations of the disproportionality measures of concentration or 

of specialization discussed in Section 2. Rather than evaluating the employment pattern in just 

one dimension, i.e., in either one industry, Li(r), or one region, L(i)r [= (Lir: i ∈ I)], measures of 

polarization cover both dimensions simultaneously, thus evaluating all elements of the indus-

try-region employment pattern, L(ir). Similar measures for two-dimensional data have recently 

been discussed in the sociological segregation literature (Reardon and Firebaugh 2002).23 The 

present paper generalizes these “segregation measures” to integrate them into the taxonomy 

introduced in the preceding section.  

In terms of the taxonomy, polarization measures require, first, specifying an (Ix1) vector of 

industry-specific weights, W(i) [= (Wi: i ∈ I)], in addition to the (Rx1) vector of region-spe-

cific weights, W(r). Similar to the region-specific weights, the industry-specific weights reflect 

the choice of basic units in the sectoral dimension. The sectoral basic units may, for example, 

be whole industries, represented by the industry-specific weights W(i) = 1(i), or be related to 

the activities of individual workers, represented by W(i) = L(i)•. Second, polarization measures 

require the reference distribution to be a bivariate distribution represented by the (IxR) matrix 

ΠΠΠΠ(ir). For absolute measures the matrix is 1(ir). For relative measures it may take various 

values. If the references are total employment by industry and region, the matrix is 

ΠΠΠΠ(ir) = L(i)•L•(r)
T
, the matrix with element (i, r) equal to Li•L•r. If the references for industries 

are total employment by industry and those for regions are the area by region, the matrix is 

ΠΠΠΠ(ir) = L(i)•A(r)
T
. Notice that the definitions and scales of the references may differ across 

industries or regions.24  

Table 2 depicts the general forms of the measures for several projection functions, similar to 

the first column of Table 1. The various weighted and unweighted absolute and relative 

measures can be derived from these general forms in a way similar to that outlined in the pre-

ceding section. To give an example, a weighted relative GE measure of polarization for 

ΠΠΠΠ(ir) = L(i)•L•(r)
T
, W(i) = L(i)•, and W(r) = L•(r) can be derived from the general form of the GE 

polarization measure in Table 2 as 

                                                

23 Aiginger and Davies (2004) discuss the relationship between entropy measures of concentration and 

specialization that are formally equivalent to the (negative) difference between the unweighted absolute Theil 

index and its upper bound. Cutrini (2006) discusses measures of ‘localization’ which are similar to the rela-

tive weighted polarization measures of this paper.  

24 The references for some industries may, for example, be related to the regions’ areas, while those for other 

industries are related to the regions’ total employment. 
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Table 2 — Disproportionality measures of economic polarization for selected projection 

functions: general forms
a
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a
 The corresponding unweighted absolute, unweighted relative and weighted relative measures are obtained 

from the general forms in the same way as described for concentration measures in Section 2 and Table 1. 

The lower bounds of all measures are 0. For the upper bounds see http://www.uni-kiel.de/ifw/staff/ 

bode/measures.htm. 
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an unweighted relative polarization GE for ΠΠΠΠ(ir) = L(i)•L•(r)
T
, W(i) = 1(i), and W(r) = 1(r) as  
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For addressing baseline criterion (ii) in Combes and Overman (2004), which requires that 

measures are comparable across industries and regions, the decomposition of GE measures of 

polarization is a particularly useful tool. The Theil index of polarization (see Table 2), for 

example, can be decomposed in both the industrial and the regional dimension. Decomposing 

it in the industrial dimension, for example, yields a within-industries component that is a 

weighted average of the Theil indices of concentration of the individual industries (see Table 

1), and a between-industries component that is the Theil index of specialization in the aggre-

gate economy.25  

With weighted relative polarization measures that use industry and region totals as references 

and weights, i.e., ΠΠΠΠ(ir) = L(i)•L•(r)
T
, W(i) = L(i)•, and W(r) = L•(r), the polarization measures are 

simply the weighted averages of the corresponding concentration or specialization measures 

(Reardon and Firebaugh 2002; Cutrini 2006). This is true not only for the GE measures but 

also for those measures that do not meet the general decomposability requirement. For the 

RMD, for example, one gets 
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3. Generalization 2: Spatial Disproportionality Measures of Concentration 

All the disproportionality measures discussed so far are invariant to the spatial ordering of the 

regions under investigation. Ignoring the spatial ordering of the data gives rise to the checker-

board problem: the measures systematically understate the true degree of concentration if the 

industry is clustered at a spatial scale larger than the regions under investigation. To avoid the 

checkerboard problem, measures need to take into account the spatial ordering of the obser-

vations. Arbia (2001) suggests combining inequality measures such as the Gini coefficient 

with statistics of spatial association such as Moran’s I or the Getis-Ord statistic.26 While the 

inequality measure is informative as to aspatial concentration, the spatial statistic gives an 

indication of the spatial clustering.  

                                                

25 With the Theil index of polarization given by ( )XXXXwwT irirriri /ln)/(,∑= , where Xir = Lir/Πir and 

irriri XwwX ,∑= , the decomposition yields biiii TTXXwT +∑= )/( , where irrri XwX ∑= , 

( )iiriirrri XXXXwT /ln)/(∑= , and ( )XXXXwT iiiib /ln/∑= . 

26 Lafourcade and Mion (2005) do essentially the same but test in addition for the effects of firm size by 

combining the dartboard measure and Moran’s I statistic. 
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Rather than combining aspatial and spatial measures in an ad hoc way, this paper suggests 

introducing the spatial dimension directly into the disproportionality measures. The resulting 

measures, which are labeled spatial disproportionality measures of concentration, are actually 

generalizations of the corresponding aspatial measures discussed in Section 2 (see Table 1). 

The basic idea is to complement the information on the industry in question from each region 

by the corresponding information on the industry from nearby regions. Reardon and 

O’Sullivan (2004) suggest doing so in a way similar to a kernel density estimation, or a geo-

graphically weighted analysis.27 More specifically, they suggest defining a measure in terms 

of the spatially weighted averages of the variables of main interest and the reference. This 

approach helps lessen, though not completely avoid, the MAUP and the checkerboard prob-

lem inherent to any analysis of concentration based on regional aggregates. 

To extend the taxonomy introduced in Section 2 to spatial disproportionality measures, Lir and 

Πr are redefined as spatially weighted averages,  

 iq
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where rq

R

qrqrq ΦΦ 1/: =∑=φ  is a nonnegative spatial weight, or spatial discount factor that 

reflects the ‘closeness’ of region q to r, and the superscript S denotes spatially weighted aver-

ages. The closeness between regions may generally depend on geographic distances, 

neighborhood patterns, or accessibility. To meet the usual regularity conditions, the weights 

are row-normalized, such that the weights sum up to one for each region, i.e., 11 =∑ = rq

R

q φ . 

Extending the set of characteristic features of the concentration measures discussed in Section 

2 by the row-normalized (RxR) matrix ΦΦΦΦ(r) = (φrq: r, q ∈ R; Σq∈R φrq = 1),28 and substituting 
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irL  and S

rΠ  for Lir and Πr, all measures in Table 1 can be extended to spatial measures of con-

centration. The general form of the spatial GE measures, e.g., reads 

 ( ) ∑
∑=

=

=

=

=





















−





















∑

∑

∑

∑

−
==

R

r

r
qrq

R

q

iqrq

R

q

r

q

R

q

iqrq

R

q

rrrrriGE

S

i

Π

L
w

Π

L

wfGE rq

1

1

1

1

1

)()()()()()( 1
)1(

1
,,,

α

αα

φ

φ

φ

φ

αα
ΦΠWL . (10) 

                                                

27 Reardon and O’Sullivan (2004) discuss this approach in the context of spatial segregation measures and 

continuous space. As in the previous sections, the following discussion will focus on disproportionality 

measures for regional aggregates. 

28 φrr = 1 and φrq = 0 for q ≠ r gives the corresponding a-spatial measures (Table 1). For notational convenience, 

ΦΦΦΦ(r) denotes the matrix of row-normalized weights (φrq) rather than absolute weights (Φrq). In matrix notation, 

)()()( rr

S

r LΦL =  and )()()( rr

S

r ΠΦΠ = . 
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Due to the geographical weighting, the effect of region r on the measure is magnified if 

industry i is overrepresented (or underrepresented) in both the region itself and its neighbors. 

And it is reduced if industry i is over- (under-) represented in region r but under- (over-) 

represented in nearby regions. It should be noted that decomposing the spatial GE measures in 

the usual way is not possible due to the interdependencies introduced by the geographical 

weights.29 A change in concentration between subregions of one region (e.g., a country) may 

influence the concentration within another region by affecting its subregion-specific propor-

tionality factors nonuniformly.  

The spatial measures are capable of reducing biases resulting from the checkerboard problem 

and the MAUP. The checkerboard problem is reduced by taking into account the geographical 

ordering of the regions. The MAUP is reduced by geographical smoothing, which addresses 

the arbitrary boundary problem, and by carefully specifying the intra- and interregional 

weights, which addresses the scale problem.30 For georeferenced microdata that provide 

information on the distances between any pairs of establishments, Duranton and Overman 

(2005; 2006) and Marcon and Puech (2003; 2005) have recently proposed describing concen-

tration using functions based on the Ripley’s K function. The K-based functions, which assign 

each possible distance a frequency of observations,31 arguably provide the currently most 

sophisticated measures of concentration because they avoid the checkerboard problem and the 

MAUP. The spatial disproportionality measures proposed in the present section are an alter-

native to the K-based functions. Both approaches may in principle be used for analyzing 

aggregate or disaggregate data. For any given level of regional aggregation, they are capable 

of dealing with the checkerboard problem and the MAUP to a similar extent. 

4. Conclusion 

This paper improves and extends the methodological toolbox for analyzing the regional con-

centration of industries and industrial specialization of regions. First, it proposes a taxonomy 

for disproportionality measures of concentration and specialization. The disproportionality 

                                                

29 See Reardon and O’Sullivan (2004) for more specific ways of decomposing spatial disproportionality meas-

ures. 

30 If transport costs or other spatial transaction costs are considered the determinants of regional interdependen-

cies, the geographical weights could be operationalized by some functions of the geographical or economic 

distance between any two regions, i.e., φrq = φ(Drq), where Drq denotes the distance between the regions q and 

r, and ∂φ/∂Drq < 0. See Anselin (1988) for a discussion of alternative forms of geographical weights. One 

possible way to specify the unobservable intraregional distances is to assume that all workers are concen-

trated at a single regional center. In this case, Drr = 0 (but φrr > 0), and the interregional distances are just the 

distances between the regional centers. Other possible ways are to assume that all workers are distributed 

uniformly over space within each region, or to estimate the intraregional distributions from a finer partition 

of regions provided, for example, by population or electoral statistics. 

31 See Marcon and Puech (2005) for a comparative survey of different K-based functions. 
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measures can be adjusted more flexibly to the research purpose and data at hand than the 

inequality measures used in the concentration and specialization literature so far. The taxon-

omy gives rise to a modular construction system that enables a researcher to unambiguously 

define the disproportionality measure by three characteristic features, the projection function, 

the reference distribution, and the weighting scheme. Each feature can be determined largely 

independently of the other two features. The modular system is also useful for systematically 

evaluating the robustness of the inferences against a variation of the individual features of the 

measure.  

Second, the paper extends and generalizes the taxonomy to disproportionality measures of 

economic polarization, and spatial disproportionality measures of industrial concentration. 

Measures of polarization evaluate industrial concentration and regional specialization patterns 

simultaneously, and render possible a nested analysis of the polarization, specialization and 

concentration patterns at different spatial and industrial scales. Spatial measures of concentra-

tion help address the checkerboard problem and the MAUP, thus posing a promising alterna-

tive to K-based statistics. Using spatially weighted averages of the relevant data as an input, 

the spatial measures allow the specific characteristics of neighboring regions as well as the 

intra-regional distributions of the variable of interest and the reference to be taken into 

account.  

We are confident that the taxonomy for disproportionality measures proposed in this paper 

will prove useful for a wide range of empirical studies on concentration, specialization and 

polarization. Future research should contribute to extending and refining the disproportional-

ity measures and their taxonomy in several respects. First, the taxonomy should be general-

ized to spatial polarization measures. Second, ways of coping with the counterparts of scale, 

arbitrary boundary, and checkerboard problems in the sectoral dimension should be explored. 

Unlike the spatial dimension, where geographical distance or traveling time is widely 

accepted as a metric for relating the locations of individual units to each other, the sectoral 

dimension is still lacking a widely accepted metric. A metric for the distances between indus-

tries may be based on the coefficients of input-output tables, or on proxies of the similarity of 

the firms or industries in terms of their input markets, output markets, or technologies (see 

Conley and Dupor 2003; Bloom et al. 2005). Based on distances between basic units in both 

the regional and the sectoral dimension, the spatial polarization measures may be extended to 

spatially and sectorally weighted polarization measures that account for the MAUP and the 

checkerboard problem in both dimensions. And third, the comparative pros and cons of the 

spatial disproportionality measures and the K-based functions should be investigated in more 

detail for both micro and macro data.  
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